177. The Reaction of SnCl₂ with the Complexes *cis*-PtCl₂ (phosphorus ligand)₂ as Studied by ³¹P and ¹⁹⁵Pt NMR.

by Paul S. Pregosin and Siu Ning Sze

Laboratorium für Anorganische Chemie, ETH-Zentrum, CH-8092 Zürich, Switzerland

(31.III.78)

Summary

The reactions of SnCl₂ with the complexes *cis*-PtCl₂P₂, P=trialkyl and triaryl phosphines and phosphites, in CDCl₃ and CD₂Cl₂ have been studied using ³¹P and ¹⁹⁵Pt NMR. methods. For equimolar amounts of Sn and Pt, products of the type PtCl(SnCl₃)P₂ are formed with the complex geometry depending on the nature of P. For P=PEt₃ and P(OPh)₃, further addition of SnCl₂ produces *trans*-Pt(SnCl₃)₂P₂ complexes. The syntheses of *trans*-PtCl(SnCl₃)(PEt₃)₂ and *trans*-Pt(SnCl₃)₂(OPh)₃)₂ are described.

Introduction. – The interaction between platinum salts and SnCl₂ has long been of interest [1]. In particular *bis*-phosphine complexes of platinum of type *cis*-PtCl₂(phosphine)₂ have recently been shown to be useful catalysts for the hydrogenation and hydroformylation of primary olefins in the presence of excess SnCl₂ · 2 H₂O [2]. Despite the useful characteristics displayed by this type of system, the complexes which form when SnCl₂ · 2 H₂O interacts with platinum salts are not well characterized. Thus although there is an early report [3] of the synthesis of yellow *cis*-PtCl₂(SnCl₃)²⁻ and red *trans*-PtCl₂(SnCl₃)²⁻ salts, the existence of the latter has been questioned in a *Mossbauer* study reporting that this red complex has the same spectrum [4] as the red pentakis anion Pt(SnCl₃)³⁻, for which an X-ray structure exists [5]. The cluster complexes Pt₃Sn₂Cl₆(C₈H₁₂)₃ and (Et₄N)₂[Pt₃Sn₈Cl₂₀] [6] as well as the monomeric *cis*- and *trans*-Pt((SnCl₃)₂(PPh₃)₂ complexes [7] have also been reported.

 ${}^{31}P{}^{1}H{}$ -NMR. measurements of platinum complexes containing tin and phosphorus should provide a sensitive probe for complex structures. This stems from the simplicity of these spectra (*e.g.* each type of phosphorus appears as a sharp, well defined signal) and the marked dependence of ${}^{1}J{}({}^{31}P{}, {}^{195}Pt{}){}({}^{195}Pt{}, I={}^{1}/_{2}{}$, natural abundance = 33.7%) on the nature of the ligand *trans* to phosphorus [8]. Additionally, the two NMR. active isotopes of tin (${}^{117}Sn$, $I={}^{1}/_{2}{}$, natural abundance = 7.7% and ${}^{119}Sn$, $I={}^{1}/_{2}{}$, natural abundance = 8.7%) can couple with phosphorus through the metal. The magnitude of this type of 2-bond interaction, *e.g.* ${}^{2}J{}(Sn, P)$, has been shown to depend strongly on whether the 2 nuclei are *cis* (150-200 Hz)

or *trans* (2100-2400 Hz) for complexes of the type PtR (PPh₃)₂ (SnClR₂) [9], thus providing an additional probe for the geometric relationship of the tin and phosphorus atoms. For the case where more than one tin is coordinated to the metal the relative *intensities* of the phosphorus signals can be of value. For a single tin where the ¹¹⁷Sn and ¹¹⁹Sn satellites overlap (*e.g.* the difference between ²J (¹¹⁷Sn, P) and ²J (¹¹⁹Sn, P) is not resolved) the phosphorus signals will appear as approximately 1:10:1 triplets. If the tin couplings are sufficiently different this ratio will be approximately 1:21:1, with ratios between 10 and 20 observed when the satellite lines are broad or poorly resolved. For 2 coordinated tin atoms the probability that *one* of the two tin atoms will be NMR. active is ~27% (the likelihood that both are active is ~2.7%). The ³¹P resonance for such a complex will appear as either a 1:5.5:1 triplet or a 1:11:1 triplet depending on the size of the tin-phosphorus coupling, thus clearly distinguishing this type of complex from one containing only a single tin atom.

A powerful complement to ³¹P-NMR. is ¹⁹⁵Pt-NMR. spectroscopy [10]. The chemical shift range for this nucleus is > 10.000 ppm and any change in molecular structure is generally accompanied by a change in δ^{195} Pt of several hundred ppm. Further, inspection of the multiplet pattern stemming from the coupling with phosphorus will often provide directly the number and type of phosphorus atoms bound to the metal.

Given the sensitivity of these NMR. methods we have begun a ${}^{31}P$ and ${}^{195}Pt$ -NMR. study of the complexes which arise in solution when SnCl₂ reacts with bis-phosphorus complexes of platinum and report here some of our results.

Experimental Part. - ³¹P and ¹⁹⁵Pt-NMR. spectra were measured as solutions in 10 mm tubes using a *Bruker* HX-90 spectrometer operating at 36,43 and 19.34 MHz respectively. ³¹P and ¹⁹⁵Pt chemical shifts are referred to external H₃PO₄ (± 0.1 ppm) and external Na₂PtCl₆ (± 1 ppm) at RT. with a positive sign indicating a shift to higher frequency (lower field) relative to the reference. Coupling constants are ± 2 Hz.

, All preparative operations were carried out under N₂. Solvents were dried and degassed. K₂PtCl₄ was obtained from *Johnson-Matthey*, P(p-CH₃OC₆H₄)₃ from *Eastman-Kodak* and P(p-ClC₆H₄)₃ from *Fluka. cis*-PtCl₂(DIOP) was a gift from Dr. *G. Consiglio* of the Technical Chemistry Institute, ETH Zürich. The starting materials *cis*-PtCl₂P₂ were obtained using literature methods [11].

Trans- $[PtCl(SnCl_3) (PEt_3)_2]$. A solution of 0.05 g (0.1 mmol) cis-PtCl₂(PEt₃)₂ and 0.19 g (0.1 mmol) anhydrous SnCl₂ in CH₂Cl₂ was stirred for 1 h after which the solvent was removed and the yellow residue recrystallized from hexane by cooling to -9° . Yield: 0,042 g (60%).

Cis-[PtCl(SnCl₃) (DIOP)]. 0.039 g (0.05 mmol) cis-[PtCl₂(DIOP)] and 0.10 g (0.05 mmol) anhydrous SnCl₂ were stirred in 8 ml CH₂Cl₂ for 10 min. The resulting bright yellow solution was concentrated to 2 ml and 4 ml of hexane added. Filtration followed by cooling at -9° for 3 h afforded colorless crystals. These were filtered, washed with hexane, and pumped dry. Yield: 0.044 g (90%).

Cis-[PtCl(SnCl₃) (PPh₃)₂]. To a stirred solution of 0.113 g (0.14 mmol) cis-[PtCl₂(PPh₃)₂] in 3.5 ml CH₂Cl₂ was added a solution of 0.140 g (0.70 mmol) anhydrous SnCl₂ in 7 ml acetone. The reaction mixture gradually became turbid. The suspension which resulted was stirred for 0.5 h at RT. and then filtered. The colorless solid product was washed with 3×1 ml acetone, then 2×1 ml CH₂Cl₂, and pumped dry under high vacuum for 6 h. Yield: 0.10 g (70%).

Trans- $[Pt(SnCl_3)_2(P(OPh)_3)_2]$. A solution of 0.112 g (0.13 mmol) cis- $[PtCl_2(P(OPh)_3)_2]$ and 0.037 g (1.90 mmol) anhydrous SnCl₂ in 5 ml CHCl₃ was stirred for 3 h, filtered, and allowed to stand at -30° for 3 days. The resulting colorless crystals were washed with 1 ml of CHCl₃ and pumped dry. Yield: 0.04 g (29%).

Analytical data for these complexes are shown in Table 1.

³¹P-NMR. Results. - The ³¹P spectra of solutions which contain *cis*-PtCl₂P₂ complexes P = a phosphorus ligand, and anhydrous $SnCl_2$ in equimolar amounts are markedly different from the solutions in the absence of SnCl₂, indicating the formation of new species. Starting from cis-PtCl₂ (PEt₃)₂, the ³¹P {¹H} spectrum at -50° reveals a sharp singlet at δ 13.6 ppm (14.3 ppm at RT.) symmetrically flanked by ¹⁹⁵Pt and ^{117,119}Sn satellites, in addition to the signals of starting material (<5%). Eventual work-up of the CH₂Cl₂ solution afforded a yellow solid whose analysis (Table 1) is consistent with the formulation trans-PtCl (SnCl₃) (PEt₃)₂, 1a (see Scheme). Further support for the trans geometry comes from a) the observed value of ${}^{1}J(Pt, P)$ (2042 Hz) consistent with 2 phosphorus atoms trans to one another [12], b) the ¹H-NMR. spectrum showing a pseudo quintet at δ 1.14 for the CH₃ resonance [13] and c) the values ${}^{2}J({}^{117,119}Sn,P)$ (227 Hz, 237 Hz) consistent with a structure in which Sn is *cis* to P [9]. The ${}^{31}P{}^{1}H{}$ -NMR. spectrum of this

Table 1. Microana	lytical Data	for the	Complexes
-------------------	--------------	---------	-----------

Compund	Empirical Formula	M.P. Analysis (%)						
		(°C)	Found			Calc.		
			С	Н	Cl	С	Н	Cl
trans-PtCl(SnCl ₃)(PEt ₃) ₂	C ₁₂ H ₃₀ Cl ₄ P ₂ PtSn	92	21.02	4.35	20.26	20.83	4.37	20.47
trans-Pt(SnCl ₃) ₂ (P(OC ₆ H ₅) ₃) ₂	$C_{36}H_{30}Cl_4O_6O_2SnPt$	233	34.24	2.36	16.69	34.15	2.39	16.79
cis-PtCl ₂ (P(p -ClC ₆ H ₄) ₃) ₂	C ₃₆ H ₂₄ Cl ₈ P ₂ Pt	284	43.83	2.80	27.37	43.36	2.43	28.44
cis-PtCl ₂ (P(p -CH ₃ OC ₆ H ₄) ₃) ₂	$C_{42}H_{42}Cl_2O_6P_2Pt$	290	52.03	4.34	7.17	51.96	4.36	7.31
cis-PtCl(SnCl ₃)(P(C ₆ H ₅) ₃) ₂	C ₃₆ H ₃₀ Cl ₄ P ₂ PtSn	288	43.66	3.10	14.75	44.12	3.09	14.43
cis-PtCl(SnCl ₃)(DIOP)	$C_{31}H_{32}Cl_4O_2P_2PtSn$	270	39.77	3.62	15.18	38.69	3.35	14.71

Scheme

$$C1 - Pt - SnC1_{3}$$

$$C1_{3}Sn - Pt - P_{B}R_{3}$$

= DIOP

Table 2. NMR. Data ^a) for the Pt-Sn complexes						
	$^{1}J(\mathrm{Pt},\mathrm{P})$	$^{2}J(\mathrm{Sn},\mathrm{P})$	δP	δPt ^b)	$^{2}J(\mathbf{P},\mathbf{P})$	
$SnCl_3)(PEt_3)_2^{c})$	2042	227, 237	13.6	- 4790		
$Cl_{3}_{2}(PEt_{3})_{2}^{c})$	1873	234, 246	8.4	- 5093		
$\operatorname{Et_3}_2^{d})^{e}$	3518		9.3	- 4475		
$(\operatorname{PEt}_3)_2^d)^e$	2397		12.2	- 3916		
$SnCl_3$ ($PnPr_3$) ₂	2028	226, 238	3.7			
$Cl_3)_2 (PnPr_3)_2^{f}$	1844	235, 247	0.3			
$n \Pr_{3}_{2}^{c}$	3486		0.0			
$(\mathbf{D}_{\mathbf{M}}\mathbf{D}_{\mathbf{r}_{*}})_{*}$	2347		38			

	•J(Pt,P)		J(Sn,P)	δP	$\delta P t^{b}$)	$^{2}J(\mathbf{P},\mathbf{P})$
trans-PtCl(SnCl ₃)(PEt ₃) ₂ ^c)	2042		227, 237	13.6	- 4790	
trans-Pt(SnCl ₃) ₂ (PEt ₃) ₂ °) cis-PtCl ₂ (PEt ₃) ₂ ^d) ^e) trans-PtCl ₂ (PEt ₃) ₂ ^d) ^e)	1873 3518 2397		234, 246	8.4 9.3 12.2	5093 4475 3916	
trans-PtCl(SnCl ₃)(PnPr ₃) ₂	2028		226, 238	3.7		
trans-Pt($(SnCl_3)_2 (PnPr_3)_2^{f}$) cis-PtCl ₂ ($PnPr_3)_2^{c}$) trans-PtCl ₂ ($PnPr_3)_2^{c}$)	1844 3486 2347		235, 247	0.3 0.0 3.8		
cis-PtCl(SnCl ₃)(P(OEt) ₃) ₂	4761 5431	Sn <i>trans</i> to P Sn <i>trans</i> to Cl		85.2 80.2		$^{2}J(\mathbf{P},\mathbf{P})=23.8$
trans-Pt(SnCl ₃) ₂ (P(OEt) ₃) ₂ cis-PtCl ₂ (P(OEt) ₃) ₂ ^d)	3623 ^d) 5697		256 ^d , 268 ^d)	104.0 ^d) 68.1	- 5302 ^g) - 4363 ^g)	
cis-PtCl(SnCl ₃)(P(OPh) ₃) ₂ ^c)	4695 5642			74.8 73.5		$^2J(\mathbf{P},\mathbf{P}) \approx 26.8$
trans-Pt(SnCl ₃) ₂ (P(OPh) ₃) ₂ ^d) cis-PtCl ₂ (P(OPh) ₃) ₂	3930 5796 ^c)°)		244, 256	97.0 59.2°)°)) – 4298 ^d)	
cis-PtCl(SnCl ₃)(P(p -ClC ₆ H ₄) ₃) ₂ ^d)	2956 3664	Sn <i>trans</i> to P Sn <i>trans</i> to Cl		27.6 10.5		$^2J(\mathbf{P},\mathbf{P})=14.7$
$trans-PtCl(SnCl_3)(P(p-ClC_6H_4)_3)_2^d)$ cis-PtCl_2(P(p-ClC_6H_4)_3)_2	2334 3652°)		215, 225	18.0 13.2°)	- 4812 - 4428 ^d) ^e	?)
	3083 3637	Sn <i>trans</i> to P Sn <i>trans</i> to Cl		27.9 10.5		$^2J(\mathbf{P},\mathbf{P}) \approx 14.7$
2						
	3623	Sn trans to P Sn trans to Cl		7.8		$^2J(\mathbf{P},\mathbf{P})\approx 14.9$
	3622	Sn trans to P Sn trans to Cl		25.8 6.6	- 4742	$^2J(\mathbf{P},\mathbf{P}) \approx 14.7$
			219, 229	14.8		
			4000 4070		- 4407	
cis-PtCI(SnCl ₃)(DIOP) ^c)						$^{2}J(\mathbf{P},\mathbf{P}) = 17.9$
cis-PtCl ₂ (DIOP) ^c)	3510		214 ⁴)	-0.8 -1.4		
	cis-PtCl ₂ (PEt ₃) ₂ ^d) ^e) trans-PtCl ₂ (PEt ₃) ₂ ^d) ^e) trans-PtCl ₂ (PEt ₃) ₂ ^d) ^e) trans-PtCl ₂ (PnPt ₃) ₂ ^f) cis-PtCl ₂ (PnPt ₃) ₂ ^c) trans-PtCl ₂ (PnPt ₃) ₂ ^c) cis-PtCl ₂ (PnPt ₃) ₂ ^c) cis-PtCl ₂ (PnOEt) ₃) ₂ trans-PtCl ₂ (P(OEt) ₃) ₂ cis-PtCl ₂ (P(OEt) ₃) ₂ ^d) cis-PtCl ₂ (P(OEt) ₃) ₂ ^d) cis-PtCl ₂ (P(OPh) ₃) ₂ ^c) trans-Pt(SnCl ₃)(P(OPh) ₃) ₂ ^d) cis-PtCl ₂ (P(OPh) ₃) ₂ cis-PtCl ₂ (P(OPh) ₃) ₂ cis-PtCl ₂ (P(OPh) ₃) ₂ cis-PtCl ₂ (P(P-ClC ₆ H ₄) ₃) ₂ ^d) cis-PtCl ₂ (P(P-ClC ₆ H ₄) ₃) ₂ ^c) cis-PtCl ₂ (P(C ₆ H ₅) ₃) ₂ ^c) cis-PtCl ₂ (P(C ₆ H ₅) ₃) ₂ ^c) cis-PtCl ₂ (P(P-CH ₃ C ₆ H ₄) ₃) ₂ cis-PtCl ₂ (P(P-CH ₃ C ₆ H ₄) ₃) ₂ cis-PtCl ₂ (P(P-CH ₃ C ₆ H ₄) ₃) ₂ cis-PtCl ₂ (P(P-CH ₃ C ₆ H ₄) ₃) ₂ cis-PtCl ₂ (P(P-CH ₃ C ₆ H ₄) ₃) ₂ cis-PtCl ₂ (P(P-CH ₃ C ₆ H ₄) ₃) ₂ ^d) trans-PtCl ₃ (SnCl ₃)(P(P-CH ₃ OC ₆ H ₄) ₃) ₂ ^d) cis-PtCl ₂ (P(P-CH ₃ OC ₆ H ₄) ₃) ₂ ^d) cis-PtCl ₂ (P(P-CH ₃ OC ₆ H ₄) ₃) ₂ ^d) cis-PtCl ₂ (P(P-CH ₃ OC ₆ H ₄) ₃) ₂ ^d)	$trans-PtCl(SnCl_3)(PEt_3)_2^{c}) 2042$ $trans-Pt(SnCl_3)_2(PEt_3)_2^{c}) 1873$ $cis-PtCl_2(PEt_3)_2^{d})^{c}) 3518$ $trans-PtCl_2(PEt_3)_2^{d})^{c}) 2397$ $trans-PtCl_2(PEt_3)_2^{d})^{c}) 2397$ $trans-PtCl_2(PnEt_3)_2^{d})^{c}) 3486$ $trans-PtCl_2(PnPr_3)_2^{c}) 2347$ $cis-PtCl_2(PnPr_3)_2^{c}) 2347$ $cis-PtCl_2(PnPr_3)_2^{c}) 2347$ $cis-PtCl_2(PnPr_3)_2^{c}) 2347$ $cis-PtCl_2(PnPr_3)_2^{c}) 2347$ $cis-PtCl_2(P(OEt)_3)_2 3623^{d})$ $cis-PtCl_2(P(OEt)_3)_2^{d}) 5697$ $cis-PtCl_2(P(OEt)_3)_2^{d}) 5697$ $cis-PtCl_2(P(OEt)_3)_2^{d}) 5697$ $cis-PtCl_2(P(OPh)_3)_2^{c}) 4695$ 5642 $trans-Pt(SnCl_3)(P(OPh)_3)_2^{d}) 3930$ $cis-PtCl_2(P(OPh)_3)_2 5796^{c})^{c})$ $cis-PtCl_2(P(OPh)_3)_2 5796^{c})^{c})$ $cis-PtCl_2(P(OPh)_3)_2 334$ $cis-PtCl_2(P(p-ClC_6H_4)_3)_2^{d}) 2334$ $cis-PtCl_2(P(p-ClC_6H_4)_3)_2^{c}) 3083$ a637 $cis-PtCl_2(P(c_6H_5)_3)_2^{c}) 3678$ $cis-PtCl_2(P(p-CH_3C_6H_4)_3)_2 3127$ a622 $trans-PtCl_2(P(p-CH_3C_6H_4)_3)_2 3706$ $cis-PtCl_2(P(p-CH_3OC_6H_4)_3)_2 3706$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^a) Coupling constants are in Hz and are correct to ± 3 . Chemical shifts are in ppm referred to external H₃PO₄ at RT. and are correct to ± 0.1 ppm.

b) Upfield from external Na₂PtCl₆. Data at - 50°. A negative sign indicates a shift to higher field.

c) In CH_2Cl_2 at -50° .

d) In CHCl₃ at -50° .

e) Measured at RT.

- ń At -80° as a mixture with 1b.
- g) Measured in acetone.
- h) Average of 117 Sn and 119 Sn couplings.
- i) As a mixture with 3a at -50° .

complex is shown in *Figure 1*. Further addition of SnCl₂ to this solution leads to a mixture of **1a** and a second complex showing a single ³¹P signal at δ 8.4 surrounded by both ¹⁹⁵Pt and ^{117,119}Sn satellites. We assign to this complex the structure *trans*-Pt (SnCl₃)₂ (PEt₃)₂ based on a) the relative intensity of the main band to the Sn satellites, b) the values ²J (^{117,119}Sn,P) and c) the value of ¹J (Pt,P) (1873 Hz) which, although somewhat small in comparison with other *trans*-Pt (II) phosphine complexes, is consistent with *trans* phosphorus atoms. Fully analogous results are obtained beginning with *cis*-PtCl₂ (PPrⁿ₃)₂ (see *Table 2*), and for both phosphines identical results are obtained whether one begins with the *trans* or the *cis* bis-phosphine platinous chloride.

The aryl phosphine compounds cis-PtCl₂(DIOP) and cis-PtCl₂(P(p-XC₆H₄)₃)₂, $X = OCH_3$, CH_3 , H, Cl, react with an equimolar amount of SnCl₂ to afford solutions whose ³¹P-NMR. spectra at -50° show new resonances corresponding to either AX (or AB) type spin systems (see Fig. 2). For the DIOP complex this was the only detectable product whereas for the monodentate systems these signals are accompanied by 2 sharp singlets, one due to an additional complex and the other to starting material (< 10%). At RT. the spectra are broader and sometimes featureless. The signals due to the 2 phosphorus atoms of the AX system are flanked by ¹⁹⁵Pt satellites whose separations suggest that one phosphorus is *trans* to chloride whereas the other is opposite to a ligand of stronger trans influence. In some cases the spectral signal-to-noise was sufficient to measure the ^{117,119}Sn couplings to phosphorus and these confirmed, via their grossly different values, that one phosphine was *cis* to Sn while the other was *trans* thus suggesting products of the form cis-PtCl (SnCl₃) (P(p-XC₆H₄)₃)₂. The second complex has ${}^{1}J$ (Pt, P) and, where measurable, ${}^{2}J(Sn, P)$ values consistent with *trans* phosphines and we are tentatively considering these as the isomeric *trans* complexes. The magnitude of the values $^{2}J(Sn,P)_{trans}$ in our trichloro stannane complexes deserves further comment. This

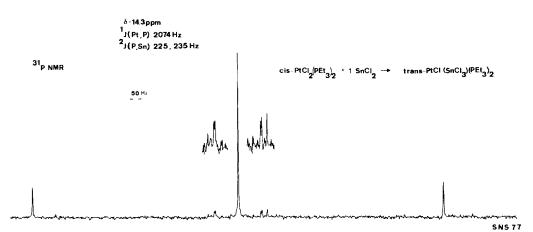


Fig. 1. The ${}^{31}P{\{^1H\}}$ -NMR. spectrum of trans-PtCl(SnCl₃)(PEt₃)₂ formed by mixing approximately equimolar amounts of SnCl₂ and cis-PtCl₂(PEt₃)₂. The small signal (~2%) to the right of the high field Sn satellites is starting material

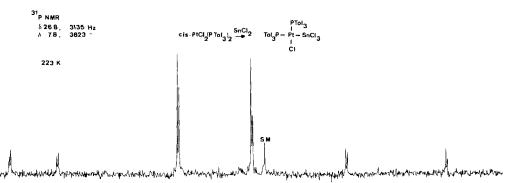


Fig. 2. The ${}^{31}P{}^{1}H{}$ -NMR. spectrum of cis-PtCl(SnCl₃)(P(p-CH₃C₆H₄)₃)₂ formed by mixing approximately equimolar amounts of SnCl₂ and cis-PtCl₂(P(p-CH₃C₆H₄)₃)₂. The signal labelled S.M. is starting material

type of coupling has been mentioned for the complexes cis-PtPh(PPh₃)₂ (SnMe_nPh_(3-n)Cl) [9] and has an approximate value of 2200-2400 Hz. This is nearly one order of magnitude larger than ²J (P, Sn)_{cis}. For the complexes cis-PtCl (SnCl₃) (P(p-CH₃OC₆H₄)₃)₂ and cis-PtCl (SnCl₃) (DIOP) (see Scheme for structures) we find ²J (Sn, P)_{trans} > 4000 Hz, making this 2-bond coupling one of the largest ever reported. The increase from ~2000 to ~4000 Hz is probably related to the electron withdrawing substituents on the tin which may increase the term ψ_{Sn} (O)² for tin and/or the term a_{Sn}^2 in the *Fermi* contact expression [12]. In any case this coupling should serve as a sensitive probe for the geometric relation of phosphorus and tin in square planar complexes. For all of our complexes ²J (P, Sn)_{cis} values fall in the range 207-262 Hz¹).

The cis and trans isomers for the complex PtCl (SnCl₃) (PPh₃)₂ have been reported previously [7]. Our ³¹P data (-50°) shows that the analytically pure white solid, reported to be the trans isomer in the solid state, gives a colorless solution when dissolved in CH₂Cl₂ containing primarily the cis isomer (cis/trans = 82/18) (δP_A 10.5, ¹J (Pt,P)=3637 Hz, $\delta P_B=27.9$, ¹J (Pt,P)=3083 Hz). The solutions of the P(p-ClC₆H₄)₃ and P(p-CH₃OC₆H₄)₃ derivatives containing one SnCl₂ at -50° showed both cis and trans isomers with cis/trans ratios of ~ 1/9 and 2.5/1²), respectively. Thus the substituents on the phenyl rings significantly affect the isomer distribution in these phosphine complexes. In this connection we note that ¹J (PtB_B) (**3f**) > ¹J (Pt, P_B) (**3c**).

The ³¹P signals from the reaction of SnCl₂ with the phosphite complexes *cis*-PtCl₂(P(OR)₃)₂, R = Et, Ph showed features similar to those of the aryl phosphines *e.g.* starting material, an AB system plus a second new complex showing a sharp singlet. Further addition of SnCl₂ results in the complete disappearance of the bis-dichloride and increasing quantities of the second complex. From separation of the ^{117,119}Sn satellites in this latter derivative, the phosphite is *cis* to tin

¹) The average of the ¹¹⁷Sn and ¹¹⁹Sn couplings.

²) ~65% cis-PtCl(SnCl₃) (P(p-CH₃OC₆H₄)₃)₂, ~26% trans-PtCl(SnCl₃)(P(p-CH₃OC₆H₄)₃)₂ and ~9% cis-PtCl₂(P(p-CH₃OC₆H₄)₃)₂.

whereas their intensities relative to the main signal suggest that this is a bis-tin complex. The ${}^{1}J(Pt, P)$ values of 3623 and 3924 Hz for the $P(OEt)_{3}$ and $P(OC_{6}H_{5})_{3}$ compounds respectively are consistent with *trans* phosphorus atoms. As with the PEt₃ and PⁿPr₃ analogs we propose the formula *trans*-Pt(SnCl₃)₂(P(OR)₃)₂ for these derivatives. For the triphenyl phosphite complex we have isolated a solid whose analysis is consistent with this composition. Analogous attempts with triethyl phosphite led to an oil.

The values of ${}^{2}J(P,P)_{cis}$ in the complexes of type 3 fall in the range 14-27 Hz and are consistent with the literature values for this type of *cis* coupling, further supporting the suggestion that these are all *cis*-phosphorus complexes.

¹⁹⁵Pt-NMR. Results. - ¹⁹⁵Pt-NMR. data for those complexes which were sufficiently soluble at -50° are shown in *Table 2*. All of the ¹⁹⁵Pt spectra can be satisfactorily analyzed as the X parts of A₂X or ABX spin systems thus demonstrating that 2 phosphorus atoms are bound to the metal. If one considers the chemical shift data for each of the stannane complexes relative to the appropriate cis-bis-phosphorus complex (e.g. $PtCl(SnCl_3)$ (PR₃)₂ relative to cis- $PtCl_2(PR_3)_2$), one finds that the introduction of the $SnCl_3^-$ ligand is associated with an upfield shift of the ¹⁹⁵Pt signal. For trans-PtCl(SnCl₃) (PEt₃)₂, trans-PtCl(SnCl₃) P(p-ClC₆H₄)₃)₂ and cis-PtCl (SnCl₃ (P(p-CH₃OC₆H₄)₃)₂ the changes are 315, 384 and 335 ppm, respectively. For trans-PtCl(GeH₂Cl)(PEt₃)₂ and trans-PtCl(SiHCl₂)(PEt₃)₂ the corresponding values are 456 and 465 ppm [14]. Given that Pt(IV) complexes often appear 500-2000 ppm downfield from an analogous Pt(II) species [10] our ¹⁹⁵Pt-NMR. data would appear consistent with the idea that our complexes have retained their initial oxidation state. The introduction of a second mole of SnCl₂, as in the PEt₃ case produces a new complex whose ¹⁹⁵Pt resonance has moved yet another 303 ppm higher. We have observed similar changes in the ¹⁹⁵Pt spectrum of the analogous $P(OEt)_3$ complexes when dissolved in acetone; however, the ³¹P spectrum for this phosphite in CDCl₃ and acetone differ significantly and further study is required.

Conclusion. – The ³¹P- and ¹⁹⁵Pt-NMR. data for chlorohydrocarbon solutions at – 50° containing equimolar amounts of $SnCl_2$ and $PtCl_2P_2$, P=a phosphorus ligand, show that new products are formed in good yield. The NMR. data for the trialkylphosphine complexes containing one tin ligand are consistent with structures 1 and 1b. Since the same product results from either *cis* or *trans* starting materials the insertion of $SnCl_2$ into the platinum/chloride bond in *cis*-PtCl₂(PR₃)₂ is followed by rapid isomerization³) (eq. 1). Addition of a second mole of $SnCl_2$ leads to a second insertion (eq. 2).

$$cis-PtCl_{2}(PR_{3})_{2} + SnCl_{2} \xrightarrow{CH_{2}CL_{2}} cis-PtCl(SnCl_{3})(PR_{3})_{2} \xrightarrow{} trans-Pt(SnCl_{3})(PR_{3})_{2} \qquad (1)$$

$$\frac{trans-PtCl(SnCl_3)(PR_3)_2 + SnCl_2}{CH_2Cl_2} + \frac{trans-Pt(SnCl_3)_2(PR_3)_2}{(2)}$$

³) We do not exclude a 5-coordinate complex as a reaction intermediate in either step in eq. 1 but merely suggest, based on the phosphite and aryl phosphine data, that a cis planar precursor is likely to be formed.

1855

For the triaryl phosphine derivatives the ³¹P data clearly show that the *cis*complexes, **3**, are the primary products formed with an equimolar quantity of SnCl₂, although the corresponding *trans* isomer is often present and is the major component in the case of P(p-ClC₆H₄)₃. The reaction of chelate complex *cis*-PtCl₂ (DIOP) with SnCl₂ affords a product whose structure is analogous to **3**. The P(OEt)₃ and P(OC₆H₅)₃ bis-complexes show similar results in that the first insertion produces *cis* complexes of type **3** which then react further with a second mole of SnCl₂ to produce *trans* bis-trichlorostannane complexes of type **2**. The synthesis of a series of complexes of general structure **1** and **2** containing Sn(OC₆H₅)₃ and Sn(O₂CC₆H₅)₃ ligands has been recently reported [15] further supporting the credibility of our proposed structures.

The limited solubility of $SnCl_2$ in chlorinated hydrocarbon solvents has prevented our studying the further reactions of $SnCl_2$ with complexes such as 2; however, the analogous NMR. studies in acetone, in which $SnCl_2$ is reasonably soluble, have given different results and these will be the subject of a separate report.

In summary, $SnCl_2$ reacts readily with an equimolar quantity $PtCl_2P_2$ complexes at RT. to give both *cis* and *trans* mono trichlorostannane complexes whose relative ratios, lability in solution and ease of isolation markedly depend upon the nature of the phosphorus ligand. For phosphite and trialkyl phosphine ligands further addition of $SnCl_2$ produces the *trans* complexes $Pt(SnCl_3)_2P_2$.

We wish to thank the Swiss National Science Foundation for support (S.N.S.).

REFERENCES

- R. Pietropaolo, M. Graziani & U. Belluco, Inorg. Chemistry 8, 1506 (1969); R. Pietropaolo, G. Dolcetti, M. Giustiniani & U. Belluco, ibid. 9, 549 (1970).
- H. Itatani & J.C. Bailor Jr., Ind. Eng. chem. Prod. Res. Develop. 11, 146 (1972); G.C. Bond
 & M. Hellier, J. Catalysis 7, 217 (1967); J.F. Knifton, J. Org. Chem. 41, 793 (1976); J.F.
 Knifton, J. Catalysis 45, 256 (1976); G. Consiglio & P. Pino, Helv. 59, 642 (1976).
- [3] J.F. Young, R.D. Gillard & G. Wilkinson, J. chem. Soc. 1964, 5176.
- [4] R. V. Parish & P.J. Rowbotham, J. chem. Soc. 1973, 37.
- [5] R. D. Cramer, R. V. Lindsay, C. T. Prewitt & U. G. Stolberg, J. Amer. chem. Soc. 87, 658 (1965).
- [6] R. V. Lindsay, G. W. Parshall & U.G. Stolberg, Inorg. Chemistry 5, 109 (1966).
- [7] M.C. Baird, J. Inorg. nucl. Chemistry 29, 367 (1967).
- [8] A. Pidcock, R.E. Richards & L.M. Venanzi, J. chem. Soc. A 1966, 1707.
- [9] C. Eaborn, A. Pidcock & B.R. Steele, J. chem. Soc. Dalton 1975, 809; ibid. 1976, 767.
- [10] A. Pidcock, R.E. Richards & L.M. Venanzi, J. chem. Soc. A 1968, 1970; J.D. Kennedy, W. McFarlane, R.J. Puddephatt & P.J. Thompson, J. chem. Soc. Dalton 1976, 874; W. Freeman P.S. Pregosin, S.N. Sze & L.M. Venanzi, J. Magn. Res. 22, 473 (1976).
- [11] J. C. Bailor, Jr. & H. Itatani, Inorg. Chemistry 4, 1618 (1965).
- [12] J. Nixon & A. Pidcock, in: 'Ann. Rev. of NMR. Spectroscopy' (Ed. E.F. Mooney), Academic Press 1969, Vol. 2, p. 345.
- [13] J.M. Jenkins & B.L. Shaw, J. chem. Soc. A 1966, 770; H.C. Clark & C.S. Wong, J. organomet. Chemistry 92, C31 (1975) and ref. therein.
- [14] D. W. W. Anderson, E. A. V. Ebsworth & D. W. H. Rankin, J. chem. Soc. Dalton 1973, 2370.
- [15] D.R. Coulson & L.P. Seiwell, Inorg. Chemistry 15, 2563 (1976).